The 数学ematics Department of Xaverian strives to em权力 all students to think 至关重要的ly and 分析 and become problem solvers capable of tackling the issues of the next generation. 通过一个发现的社区, 探索, and productive struggle we strive to build a connection between mathematical concepts and real-world applications. We have created an environment where students become confident and continue to grow as individuals and contribute to their community at large, 无论是通过继续教育还是在现实世界中.
数学系目标
3项清单.
营造热情的环境
创造一个热情的环境,促进学生合作, 参与, 和自省.
加强批判性思维
To strengthen 至关重要的 thinking skills through the use of questioning and modeling real-life situations.
运用多种解决问题的策略
To utilize multiple 解决问题 strategies to encourage 分化 in everyday instruction.
在这门课程中,学生分析和解释解方程的精确过程. 通过反复推理, 学生的写作能力得到提高, 解释, and translating between various forms of linear 方程 and 不平等 and make conjectures about the form that a linear equation might take in a solution to a problem. They learn the terminology specific to polynomials and understand that polynomials form a system analogous to the integers. Students develop a set of tools for understanding and 解释 variability in data and begin to make more informed decisions from data. 它们处理各种形状、中心和扩展的数据分布. Students extend their study of 功能 to include function notation and the concepts of domain and range. 他们探索了许多函数和函数图的例子, 着重于线性函数和指数函数的对比. 它们用图形来解释给定的函数, 数值, 象征性地, 和口头, 表示之间的翻译, 理解各种表述的局限性. 学生们继续解释表达, 建立方程, 用不同但等价的形式重写方程和函数, 画出图形,解释函数, 但这次用的是多项式函数, 更具体地说,二次函数, 以及平方根和立方根函数.
在这门课程中,学生分析和解释解方程的精确过程. 通过反复推理, 学生的写作能力得到提高, 解释, and translating between various forms of linear 方程 and 不平等 and make conjectures about the form that a linear equation might take in a solution to a problem. They learn the terminology specific to polynomials and understand that polynomials form a system analogous to the integers. Students develop a set of tools for understanding and 解释 variability in data and begin to make more informed decisions from data. 它们处理各种形状、中心和扩展的数据分布. Students extend their study of 功能 to include function notation and the concepts of domain and range. 他们探索了许多函数和函数图的例子, 着重于线性函数和指数函数的对比. 它们用图形来解释给定的函数, 数值, 象征性地, 和口头, 表示之间的翻译, 理解各种表述的局限性. 学生们继续解释表达, 建立方程, 用不同但等价的形式重写方程和函数, 画出图形,解释函数, 但这次用的是多项式函数, 更具体地说,二次函数, 以及平方根和立方根函数.
主题包括代数分数, 不平等, 序列, 功能, 限制, 向量, 矩阵, 还有三角函数, 统计数据, 积分与微分学. Students will recognize and graph various 功能 and utilize them to solve problems like compound interest and radioactive decay.
本课程涵盖纽约州代数II/三角课程. Students will demonstrate the ability to use trigonometric relationships to solve real-world problems and will demonstrate skill in the use of the 图形 calculator. 和班主任商量一下, select students will be invited to take the Regents Exam in June based upon overall class performance.
The aims of the course are to appreciate the international dimensions of mathematics and the multiplicity of its cultural and historical perspective, foster enjoyment from engaging in mathematical pursuits and to develop an appreciation of the beauty, 权力, 数学的有用性, 发展逻辑, 至关重要的, 以及数学上的创造性思维, 发展数学知识, 概念和原理, 运用并完善抽象和概括的能力, 培养解决问题的耐心和毅力, 提高了对…的认识, 利用…的潜力, 各种数学背景下的技术发展, 数学交流, 既清晰又自信, 在不同的语境中.
*Students successfully passing this course will be eligible to receive up to 3 college credits through St. 约翰的大学. 学生将负责所有额外费用的St. John’s as well as completing any required applications for acceptance to the College Advantage Program.
This course is designed for students who wish to review the basic principles of algebra and trigonometry and study additional topics. 符合高级微积分预科或微积分资格的学生不应注册本课程. Essentials from algebra and geometry will be reviewed and some time will be spent in preparation for the SAT. 主题将包括三角学, 对数, 算术和几何级数, 综合除法(用于解高次方程), 行列式(用于解三个未知数的联立方程), 线性和二次不等式的图解, 以及一些基本的微积分在极大值和极小值问题中的应用. 学生将展示对代数技巧和三角概念的掌握.
*Students successfully passing this course will be eligible to receive up to 3 college credits through St. 约翰的大学. 学生将负责所有额外费用的St. John’s as well as completing any required applications for acceptance to the College Advantage Program.
本课程学习基本的概率定律及其应用, 组合分析, 条件概率和贝叶斯规则, 离散分布和连续分布. 学生学习中心极限定理, 统计推断, 抽样理论, 估计, 假设检验, 拟合优度, 回归, 相关, 方差分析. This course will provide a working knowledge of probability as a foundation for the statistical concepts covered in the course. The course will provide familiarity with concepts in 统计推断 for application to technical, 业务, 并对社会科学问题进行了进一步研究和定量分析的方法.
先决条件:
代数II /三角(H)成绩85%,几何成绩80%,SAT数学成绩合格
代数II /三角90%,SAT数学合格
数学老师推荐
SAT数学和语言的最低综合成绩为1080分
这是一门被认可的选修课程,适用于任何荣誉课程的学生.
本课程只对大四学生开放. 约翰的信贷
*Students successfully passing this course will be eligible to receive up to 3 college credits through St. 约翰的大学. 学生将负责所有额外费用的St. John’s as well as completing any required applications for acceptance to the College Advantage Program.
AP微积分AB is roughly equivalent to a first-semester college calculus course devoted to topics in differential and integral calculus. AP课程涵盖了这些领域的主题, 包括极限的概念和技巧, 衍生品, 定积分, 以及微积分基本定理. The course teaches students to approach calculus concepts and problems when they are represented graphically, 数值, 分析, 和口头, 并在这些表征之间建立联系. 学生学习如何使用技术来帮助解决问题, 实验, 解释结果, 并支持结论.
AP微积分BC is roughly equivalent to both first and second-semester college calculus courses and extends the content learned in AB to different types of 方程 and introduces the topic of 序列 和系列. AP课程涵盖了微积分和积分学的主题, 包括极限的概念和技巧, 衍生品, 定积分, 微积分基本定理, 和系列. The course teaches students to approach calculus concepts and problems when they are represented graphically, 数值, 分析, 和口头, 并在这些表征之间建立联系. 学生学习如何使用技术来帮助解决问题, 实验, 解释结果, 并支持结论.
Sixth-grade mathematics introduces new topics and builds upon the skills learned in elementary school. This course focuses heavily on arithmetic including recognizing and performing computations and developing a strong number sense. 学生还将学习使用公式,分析和解释图表. 六年级的数学为以后的课程奠定了坚实的基础. 掌握是在预代数和高中阶段取得成功的关键. 学生将以书面和口头形式展示他们对内容的理解.
本课程旨在使学生成为自信、有能力的问题解决者. 学生将学习在各种情况下应用数学, 并以书面和口头形式交流他们对数学内容的理解. The course will help provide a solid foundation for further study in mathematics by strengthening students’ computational, 程序上的, 以及解决问题的能力. The four main areas of emphasis in Grade 7 are proportional relationships and applying those relationships to solve problems, 有理数运算, 表达式, 线性方程, 比例图和非正式的几何结构, 并根据样本对总体做出推断.
本课程旨在使学生成为自信、有能力的问题解决者. 学生将学习在各种情况下应用数学 并以书面和口头形式交流他们对数学内容的理解. The course will help provide a solid foundation for further study in mathematics by strengthening students’ computational, 程序上的, 以及解决问题的能力. 鼓励学生在解决问题的环境中设计应用程序 as they 探索 the key concepts of algebra and geometry.
在代数和几何选择的主题作为课程内容. 学生将掌握阅读能力, 通过各种方法分析和解决现实世界的问题. 他们将能够展示各种代数技巧的能力. This is a NYS Regents course designed for students who will take the Regents exam in January of sophomore year.
本课程的开始将集中于完成积分代数课程. Students will begin their study of geometry during the second semester and will follow the NYS Regents curriculum based on Euclidean and coordinate geometry, 同时也要了解证明的基本原理.
Students continue to study topics in the 几何 curriculum and continue to work with NYS Standards for 数学. 介绍了三角函数的概念以及sat的关键主题. Students move through the 数学11 curriculum as they master material appropriate to their individual 数学 skills.
本课程涵盖纽约州代数II/三角课程. Students will demonstrate the ability to use trigonometric relationships to solve real-world problems and 培养解决问题的耐心和毅力 while demonstrating skill in the use of the 图形 calculator. 学生也将有一个增强的意识, 利用…的潜力, 各种数学背景下的技术发展
This course is designed for students who wish to review the basic principles of algebra and trigonometry and study additional topics. Essentials from algebra and geometry will be reviewed and some time will be spent in preparation for the SAT. 主题将包括三角学, 对数, 算术和几何级数, 综合除法(用于解高次方程), 行列式(用于解三个未知数的联立方程), 线性和二次不等式的图解, 以及一些基本的微积分在极大值和极小值问题中的应用. 学生将展示对代数技巧和三角概念的掌握.